The poetry* package

Mark Wooding

28 May 1996

Contents

1 User guide 1 2.3 Some little details 7
1.1 Typesetting simple poems 2 2.4 Line numbering 7
1.2 Playing with stanzas . . . 2 2.5 The main environment . . 8
1.3 Starting new lines 3 2.6 Poem chunk handling . . 10
1.4 Line numbering 4 2.7 Typesetting poem lines . 11
1.5 Other little extras 4 2.8 Starting a new line 13

2.9 Other things 14

2 Implementation 5
2.1 Various allocations 5 A The GNU General Public
2.2 Handling poem widths . . 6 License 16

1 User guide

The poem package is designed to provide appropriate typesetting for all manner
of ‘sensible’ poems, by which I mean not to exclude the works of such great poets
as Spike Milligan, but more those who lay out their words to form pretty patterns:
such works must be dealt with on an individual basis, I'm afraid.

An overview of the features provided wouldn’t go amiss, I think.

e Poems are normally centred on the page based on the length of the longest
line. This package handles this requirement, but allows poems to be left or
right aligned if desired.

e Lines of poems are numbered, and may be labelled and referenced using
the normal \label and \ref commands of ITEX. Numbers are by default
printed every 5 lines, on the right hand side, but this is fully configurable,
as is the style of the numbers.

e Stanzas can be numbered, titled, either, neither or both. Stanza numbers
can be labelled and referenced.

poem

\poemline

\title

\author

\poemtitle
\poemauthor

\stanza

\labelstanza

1.1 Typesetting simple poems

You can typeset a poem using the poem environment. The lines of the poem are
separated by \\ commands as usual. Use the \stanza* command to start new
stanzas. Something like this would do the job:

TO DO

There should be a demo here

Lines of a poem will be broken if they get too long. However, a ‘logical’ line of
a poem will never be broken between pages.! Continued lines are indented from
the left margin by a fair distance, so that they don’t get confused with the starts
of new lines.

You’ve probably noticed that the poem lines are numbered down the right hand
side. This happens automatically, although you can turn it off if it’s inappropriate.
All the line numbers are generated by the command \poemline, which you can
define however you like. Saying

\renewcommand{\poemline}{}

will cause nothing to be printed for the line numbers, turning them off.

TO DO

A command to disable numbering?

You can use the \title command to typeset a title for your poem. The title
is inserted right there and then, so watch out. It’s conventional to put the title at
the top of the poem, although this is art we’re talking about, so who knows? Just
say (title)}.

Similarly, the author of a poem can be credited with the \author command.
Just put the author’s name in the argument. Authors usually go at the bottom
of poems.

The \title and \author commands are implemented internally by the com-
mands \poemtitle and \poemauthor, which you can redefine if you like. You
should probably have a look at the default definitions before you do this: they
use some little features which haven’t been described yet. Don’t be intimidated,
though: T’ll get to them later!

1.2 Playing with stanzas

The \stanza command is actually fairly complicated. It always starts a new
stanza, leaving a gap if necessary after the previous line. Also, the stanza will be
numbered, unless you use the \stanza* command. You can also give the stanza a
title by saying \stanza[(title)] (or \stanzax... if you don’t want the number).
The title and number are printed above the new stanza.

The stanza numbers are typeset by the command \labelstanza which you

*The poetry package is currently at version 1.00, dated 28 May 1996.
1This is an artifact of the way I’ve implemented the poems. I don’t think it’s a terribly nasty
restriction.

\\

\nl

can define however you like. To disable them entirely, say

\renewcommand{\labelstanza}{}

There are a collection of other style parameters for stanza titles. These are
described below (if you’re not interested in this sort of thing, skip to the next
section).

\tanza is a I/ TEX counter which contains the current stanza number.
\thestanza typesets the value of the stanza counter in normal text.

\labelstanza typesets the value of the stanza counter specially for use as a
stanza title. (The default style uses small caps here, which is generally
inappropriate in running text.)

\stanzaname is a command with one argument which typesets a stanza title
string, as passed to the \stanza command (not including the number).

\stanzacombine is given two arguments: a title (built by \labelstanza) and a
title (formatted by \stanzaname). It should format and space these two
arguments. It can’t change the font of this text — it’s too late for that now.
This command is only used when both a number and a stanza title are given.

\stanzaspace is called with no arguments. It should somehow separate the pre-
vious stanza (if any) from the new one. Look at the counter value to find
out whether this is the first stanza, if it matters (e.g., you're drawing little
rows of stars or something).

\stanzatitle is given one argument: a ‘combined’ title. It should typeset the
title as a line in LR mode. Again, it’s too late to play with fonts now.

All of the commands described above are given fairly simple definitions by
default: you should be able to customise these without difficulty.

1.3 Starting new lines

New lines within a stanza are started with the \\ command. This always starts
a new line. The * command (which forbids a following page break) and the
optional argument (which adds vertical space) are fully supported.

However, there’s also a command \nl which works like \\ (it has a *-version
and so on) except that it won’t start a new line unless there’s something already
on the current one. This is useful in commands like \poemauthor which want to
typeset their text on a new line without possibly leaving an ugly looking gap.

For example, the definition of \poemauthor is:

\providecommand{\poemauthor} [1]1{%
\nl*[\smallskipamount]?
\nonumber?,
\hfill\normalfont\itshape#17
\\%

}

\poemline

\ifmultipleof

\poemlineposition

\nonumber

xpoem

The important part to us is that \nl*[\smallskipamount] at the beginning.
This starts a new line, making sure that there’s no page break between it and
the previous line, and adds a little extra space before the author’s name. The
\nonumber command just prevents this line from being numbered, since it’s not
actually part of the poem itself: numbering is dealt with in detail in the next
section.

1.4 Line numbering

I skimmed over line numbering earlier, because it’s a bit complex. I'll start with
the default definition of the \poemline command, which will give me something
specific to talk about. The command is used to generate the line number for the
line which has just finished.

\providecommand{\poemline}{%
\ifmultipleof{5}{\value{poemlinel}}/,
{\poemlineposition[r]{\scriptsize\thepoemlinel}}%
A8y
\refstepcounter{poemline},

}

The \ifmultipleof{5}{\value{poemline}}... construction restricts the
printed numbers to every fifth line (\value{poemline} is the value of the
poemline counter). Saying \ifmultipleof{n}{z}{(true)}{(false)} will do (true)
if 2 is a multiple of n; otherwise it does (false).

The \poemlineposition command positions its text to the right or left of the
poem, according to whether its optional argument is ‘1’ or ‘r’.

So, the code up there just prints the poem line in small numbers on the right
hand side of every fifth line of the poem. (Phew!) It then steps the counter so it’ll
be all right for cross-references in the next line down. Got that?

Something a little simpler now: saying \nonumber in a line of poetry will
suppress the line number on that line. The counter won’t be stepped, and no
number is printed. This is mainly useful in titles and other adornments in poems.

1.5 Other little extras

The poem environment doesn’t actually do a lot by itself. If you look at its
definition, you’ll see that it just starts a standard IXTEX verse environment and
then calls the xpoem environment to do the actual work. The idea is that you can
then redefine poem to do whatever setting up you want and then use xpoem to do
its typesetting magic. For example, the definitions

\newcommand{\poemend}{}
\renewenvironment{poem} [2]{%
\begin{versel}/,
\renewcommand{\poemend}{\author{#2}}/,
\begin{xpoem}
\title{#1}%
H%
\poemend’,
\end{xpoem}’,
\end{versel}/,
}

\splitline

modifies the environment so that it takes two arguments, the title and the
author, and sets them at the beginning and end of the poem respectively.

TEX hackers who know about such things could make a poem environment
which ‘obeys’ line breaks in the input file by making active newlines do an \nl
command. The possibilities are endless.

The \splitline command should be used at the start of a new line (it starts
a new line all by itself otherwise). It shunts all the text of the line to the right so
that it starts where the previous line finished.

TO DO

Come up with an example for this

2 Implementation

2.1 Various allocations

I need a shocking number of allocations for this package to work. T’ll start with
the counters, because they’re probably the most reasonable.

poem@count keeps track of which poem this is, so I can look up the width in my
magic list (I'll describe width handling later in detail). poemline is a user-level
counter which keeps track of the current line number. stanza keeps track of the
current stanza number.

The \poemchunksize counter (which is also faked as a ATEX counter) tells me
how big a chunk should be. The final counter, \poem@linesleft tells me how
many more lines I can do in this chunk.

All the counters are assigned globally, or at least they should be.

1 \newcounter{poem@count}

2 \newcounter{poemline}

3 \newcount \poemchunksize

4 \let\c@poemchunksize\poemchunksize
5 \newcount\poem@linesleft

6 \poemchunksize=30

Now for some length registers. \poem@width contains the width of the poem
as read from the .aux file; \poem@thiswidth contains the width of the longest
line read so far. Both of these are updated as I go through the poem. The final
value of \poem@thiswidth is written back to the list when all’s finished.

\poem@lastwidth contains the width of the last line — it’s used in handling
\splitlines. \poem@prevdepth is used to fiddle \prevdepth when handling long
lines.

All of these length parameters should be modified globally at all times.

7 \newdimen\poem@width

8 \newdimen\poem@thiswidth
9 \newdimen\poem@lastwidth
10 \newdimen\poem@prevdepth

The switch \ifpoem@long is used to decide whether we need to save the poem
width in the aux file.

11 \newif\ifpoem@long

\poem@getwidth

\poem@setwidth

Lastly, a skip register. This is the glue on the left hand side of a poem. It
should be \@centering to center the poem horizontally, or something rigid and
nonzero to left-align.

12 \newskip\poemleftskip
13 \poemleftskip\@centering

2.2 Handling poem widths

Poems are horizontally centred, based on the width of their longest line. This
can be done without too many problems using an \halign. However, this would
require TEX to read in the whole poem before being able to lay out the first line;
this is clearly impractical for something like The Rime of the Ancient Mariner.

The solution is fairly similar to that used by the longtable package. I'll divide
a poem up into chunks, centring each chunk horizontally. I'll also keep track of
the longest line so far, and make sure that it affects each chunk, so as to prevent
the chunks looking odd. When all’s finished, I'll write a list containing the widths
of all the poems to the .aux file so that next time everything will look nice.

The list is held in just one macro, which contains entries of the form
[(poem-number)]{{width)}. 1 build the new updated list in another macro as
I go — this version will be written to the .aux file at the very end, to ensure that
inserted or removed poems don’t mess anything up permanently. It also avoids
problems to do with poem widths decreasing, which gives longtable a bit of a
headache.

These two macros are always assigned globally.

14 \def \poem@widths{}
15 \def \poem@savedwidths{}

The width of the current poem can be read using this macro. It assigns the width
to the \poem@width register; it gets the value 0 pt if no value for this poem actually
exists.

16 \def \poem@getwidth#1{J

17 \def\@tempa#i#l [#1]##2##3\00{##2},

18 \global\poem@width\expandafter\@tempa\poem@savedwidths [#1]\z0@\QQY%
19 \relaxy,

20 ¥

I can also write the width of the current poem using this macro. It updates the
new improved list with the value of \poem@thiswidth.

21 \def\poem@setwidth#1{%

22 \def\@tempb##1 [#1]\z0{##1}Y
23 \def\@tempa##1 [#1]##2##3\0C{},

24 \xdef \poem@widths{/

25 ##1%

26 [#1]{\the\poem@thiswidth}/,

27 \ifdim##2=\z0\else\expandafter\Qtempb\fi##3J,
28 Yh

29 Y

30 \expandafter\@tempa\poem@widths [#1]\z@\QQ}

31}

\@maybeQunskip

\ifmultipleof

\poemlineposition

At the very end of the document, I want to write the poem widths to the .aux
file. The following code will do the job nicely.

32 \AtEndDocument{Y%
33 \if@filesw%

34 \immediate\write\@auxout

35 {\gdef\noexpand\poem@savedwidths{\poem@widths}}%
36 \fi%

37}

2.3 Some little details

This macro solves a little problem. In an alignment (and in other places) it’s
desirable to suppress trailing space. The usual method, to say \unskip, is a little
hamfisted, because it removes perfectly reasonable aligning spaces like \hfils.
While as a package writer I can deal with this sort of thing by saying \kern\z@
in appropriate places, it can annoy users who are trying to use \hfill to override
alignment in funny places.

My current solution seems to be acceptable. I'll remove the natural width
of the last glue item, so that it can still stretch and shrink if necessary. The
implementation makes use of the fact that multiplying a (skip) by a (number)
kills off the stretch.

38 \def\@maybe@unskip{\hskip-\@ne\lastskip\relax}

2.4 Line numbering

Poem lines are numbered in a fairly sensible and normal way. However, it’s not
normal to number every single line. The macro \poemline below will decide
whether and how to number a line.

This macro is called as \ifmultipleof{n}{z}{(true)}{(false)}. If the number z
is a multiple of n, then the whole lot expands to (true); otherwise it expands to
(false). The test here relies on TEX doing integer division (which it does).

39 \def\ifmultipleof#1#2{J,
40 \count@#2%

41 \divide\count@#19,

42 \multiply\count@#17
43 \relax},

44 \ifnum#2=\count@J,

45 \expandafter\@firstoftwo
46 \else),

47 \expandafter\@secondoftwo
48 \fi%

49 }

This macro typesets its argument relative to the poem in some neat way. It’s called
as \poemlineposition[(posn)]{(text)}. The (posn) may be ‘1’ or ‘r’, where ‘I
and ‘r’ mean left and right respectively.

This command only produces at all sensible results when typesetting poem line
numbers.

50 \def\poemlineposition{\@ifnextchar [\poem@1lp@i{\poem@lp@i [1]}}

\poemline

xpoem

Now there’s some sorting out to do. If the number is to go on the right, then
there’s no problem: it can just be typeset as it is. Positioning on the left isn’t too
hard either — I just need to shift the number to the left by \1inewidth plus a bit
for niceness.

51 \def\poem@lp@i [#1]#2{Y
52 \if#1r%

53 \hfil\kern8\p@#2/

54 \else\if#11%

55 \1lap{#2\kern8\p@\kern\linewidth},
56 \fi\fiy

57 F

The default definition of \poemline will put a line number in script size (so as
not to appear too obvious) on every fifth line.

58 \providecommand{\poemline}{%
59 \ifmultipleof{5}{\value{poemline}}%

60 {\poemlineposition[r]{\scriptsize\thepoemlinel}}%
61 {0

62 \refstepcounter{poemline}

63 }

2.5 The main environment

The xpoem environment is where the nastiness really starts. Actually, the early
bit is simple enough.

This environment has a funny name, so that users and style designers can
define a usable ‘poem’ environment the way they want. Typically this will involve
playing with some parameters, maybe setting up some active characters in a funny
way, and probably adding a list environment to provide appropriate indentation
on the left and right sides.

64 \def \xpoem{%
The first thing to do is to reset the line number counter.
65 \global\c@poemline\z@Y

Now for some hookery — the internal \poem@printline command will do the
job of deciding whether to print a line number or not on the current line. Unless
otherwise disabled, this will be equal to \poemline.

66 \globall\let\poem@printline\poemline,

The \nonumber command, which is also used by eqnarray,? suppresses num-
bering of the current line by changing \poem@printline. It will be reset by the
next line end, so it only applies to a single line.

67 \def\nonumber{\global\let\poem@printline\@emptyl}’

The \title and \author commands need redefining. I’ll set these equal to
some user-configurable commands below.

68 \let\title\poemtitle
69 \let\author\poemauthor?,

2Just a plug: check out the improved eqnarray environment in the mathenv package!

Do some nasty things to make lists work properly.

70 \global\@inlabelfalse}
71 \global\@newlistfalse}

Now it’s time to start the alignment. I'll clear the \everycr tokens, and set
up the \\ command. T’ll make \par expand to nothing exciting, so that blank
lines in poems won’t mess anything up, and set up the ‘outside’ meaning of \nl.

72 \everycr{}%

73 \let\\\poem@cr?,

74 \def\nl{\poem@nl}

75 \global\let\poem@nl\poem@donly,
76 \let\par\@empty’

Now to set the widths of the poem. \poem@width is read from the .aux file
from the last time the poem was typeset, and is used to set the width this time,
while \poem@thiswidth is initially zero, and is set up as we go through this time,
and will be used to set the actual poem width next time. Is that clear? No? Oh,
well.

77 \expandafter\poem@getwidth\expandafter{\the\c@poem@count}y
78 \global\poem@thiswidth\z@%
79 \global\poem@longfalse

Now some hacking to position the poem horizontally. I need to inspect the
current list margins, so as to make it look right. I'll set \dimen@ to be the size of
the right hand margin.

80 \dimen@\hsize,
81 \advance\dimen@-\Qtotalleftmarginy,
82 \advance\dimen@-\linewidth},

Now for some silly little things before I really get going. Leave some vertical
space, and step the counter ready for the first line.

83 \bigskipl
84 \stepcounter{poemline},
85 \def\@currentlabel{\p@poemline\thepoemline}y,

Other things may want to add their declarations here. I’ll provide a hook.
86 \poem@hooky
Now start the first poem chunk and give control to the user.

87 \poem@startchunk}
88 }

That’s the start of the environment done; what happens at the end? Well,
some fairly simple things, actually.

89 \def \endxpoem{%
First of all, I forcibly truncate this chunk of poem.

90 \nlJ
91 \poem@endchunk’,

Now, if the poem is longer than the chunk size, I'll add it to the new width
list. If it’s shorter than the chunk size, there’s no need to do this, since TEX will
always work out the correct width ‘in time’.

\poem@hook

\poem@addtohook

\poemtitle

\poemauthor

\poem@startchunk

92 \ifnum\c@poemline>\poemchunksize\poem@longtrue\fi

93 \ifpoem@longy

94 \expandafter\poem@setwidth\expandafter{\the\c@poem@countl}y,
95 \fi%

Now I'll step the poem counter, leave a little gap, and end the environment.

96 \globalladvance\c@poem@count\@ne
97 \bigskip%
98 }

The hook used above in \poem starts off empty. Macro packages can add to it
later.

99 \def \poem@hook{}

Packages add to that hook by saying \poem@addtohook{(declarations)}. This is
truly trivial.

100 \def\poem@addtohook#1{/,
101 \expandafter\def\expandafter\poem@hook\expandafter{\poem@hook#11}7
102 }

I’ll take a break from the deep hacking for a while, and implement some style
things. These commands should be redefined to alter the style of the poems. (I've
tried hard to make them as simple as possible.)

Poem titles are large, bold, and centred. The \nl command starts a new row if
necessary. I want to avoid a page break after the title, for obvious reasons.

103 \providecommand{\poemtitle}[1]1{%

104 \nlJ

105 \nonumber?,

106 \hfill\normalfont\large\bfseries#1\hfill}
107 *[\bigskipamount]%

108

Authors are typeset in italics, right aligned.

109 \providecommand{\poemauthor} [1]{%
110 \nl#*[\smallskipamount]?

111 \nonumber},

112 \hfill\normalfont\itshape#1%

113 \\%

114 }

2.6 Poem chunk handling

Poems are divided into chunks to save TEX’s memory. Chunks are started like
this:

115 \def\poem@startchunk{%

Reset the ‘lines left” counter. When this hits zero, I end the chunk and start
another one.

116 \global\poem@linesleft\poemchunksize,

10

\poem@endchunk

\poem@doline

Now for the alignment itself. The poem is centred by tabskip glue around its
first column. There are an infinite number of zero-width columns off to the right,
in which the line numbers are typeset (this avoids problems if users accidentally
tab over to the next column).

The ‘main’ column is a bit odd. It reads the text into a box, which is global
to preserve save stack space, and then calls a macro \poem@doline to typeset the
text in the box correctly.

117 \skip@\@totalleftmarginj,

118 \advance\skip@\poemleftskip%
119 \tabskip\skip@}

120 \halign to\hsize\bgroup’

121 \global\let\poem@nl\poem@cr

122 \global\setbox\@ne\hbox{{\ignorespaces##\Omaybe@unskip}}\poem@doliney,
123 \tabskip\@centering&&,

124 \poem@rightcolumn\hbox{{##}}\tabskip\dimen@\cr?,

125 }

This is really easy. I end the line, in case it hasn’t been ended already (although

it should have been), and end the alignment.

126 \def\poem@endchunk{’

127 \crcr,

128 \noalign{\global\dimen®i\prevdepth\nointerlineskip}’
129 \omit\hb@xt@\poem@width{}\cry

130 \egroup’

131 \prevdepth\dimen@iY%

132 }

2.7 Typesetting poem lines

This is where most of the real mess lies. Given a line of doggerel in box 1, I must
typeset it beautifully.

133 \def\poem@doline{’

In order to know whether I need to split the line, I must know how wide the
line number is. (Judging from the books I’ve seen, lines are allowed to encroach
on the space allocated to line numbers, as long as there isn’t a number on this
line. Maybe as a future extension, I could decide whether it might be better to
suppress this line, and maybe force a number for the next one since it won’t fit
here.)

Anyway, I'll do this the easy way. I'll work out the width of the line number,
and subtract it from the basic line width.

134 \dimen@\linewidth},
135 \global\setbox\@labels\hbox{\poem@printline}%
136 \advance\dimen®@-\wd\@labels},

If the width of the doggerel is wider than \dimen@, I must split the text over
more than one line, or at least I must try to. (TEX may be able to squeeze the text
onto one line by shrinking the glue, so I've got to watch out for this possibility.)

137 \ifdim\wd\@ne>\dimen®@},

11

I’ll now put the text in a vbox, so I can play with it. The parshape is set up so
that the first line misses the line number (if there is one), while subsequent lines
are indented, but take up the full available width of the page. The text is not
indented (just to make sure).

The messing with \leftskip and the initial kern provides the indentation, and
saves a little arithmetic. There is a more plausible historical reason for it too.

138 \global\setbox\@ne\vtop{/%

139 \parshape\tw@ \z@\dimen®@ \z@\linewidthy
140 \leftskip3em/,

141 \noindent?

142 \kern-3em,

143 \unhbox\@neY

144 \@@par?

145 Y

Since table cells are set in LR mode, the baselineskip glue will be set all wrong
underneath this line. I also need to set \poem@lastwidth correctly. I’ll copy the
box to another box, and pick off the bottom line so I can peek inside.

I'll set \poem@prevdepth from the depth of the box (this will be set properly
at the end of the line). I'll also rip that box apart, remove the \parfillskip glue,
and rebox it in an attempt to calculate \poem@lastwidth. This isn’t perfect, since
the line might actually be shrinking instead of stretching. This is unlikely, though.

146 \global\setbox\thr@@\vbox{%

147 \unvcopy\@ne

148 \global\setbox\thr@e@\lastbox’

149 \global\poem@prevdepth\dp\throa@y,

150 \global\setbox\thr@e\hbox{\unhbox\thre@\unskip}s
151 \global\poem@lastwidth\wd\threey,

152 Yh

Now that’s done, I can output the box. I'll clear box 3, which I vandalised
above. I also know that the line was too long, so I can set the poem widths to
\linewidth with impunity.

153 \box\@ne},

154 \global\setbox\thr@@\box\voidb@x
155 \global\poem@width\linewidth

156 \global\poem@thiswidth\linewidthy

157 \else),

If it fits, I can update the widths if necessary, set \poem@lastwidth, and spew
out the text. Finally, I'll set \poem@prevdepth to a sentinel value meaning ‘don’t
change’.

158 \ifdim\wd\@ne>\poem@width\global\poem@width\wd\@ne\£fi}

159 \ifdim\wd\@ne>\poem@thiswidth\global\poem@thiswidth\wd\@ne\fi%
160 \global\poem@lastwidth\wd\@ne

161 \unhbox\@ne\hfily,

162 \global\poem@prevdepth\maxdimen,

163 \fil

164 }

12

\poem@cr

2.8 Starting a new line

There are two different routes to starting new lines. The \\ command always
starts a new line. The command \nl will work out if the current line hasn’t been
started yet, and behaves appropriately.

The \poem@cr macro implements the \\ command and the \nl command once a
new line has been started.

First, I need to pick out the optional arguments. All the standard hacking for
doing newlines in alignments appears here. If you want detailed commentary, look
somewhere else — this is humdrum stuff now.

165 \def\poem@cr{%

166 \relax’

167 \global\let\poem@nl\poem@donly

168 \iffalse{\fi\ifnumO=‘}\fi%

169 \@ifstar{\poem@cr@i\@M}{\poem@cr@i\z@}/,

170 }

171 \def\poem@cr@i#1{\@ifnextchar [{\poem@cr@ii{#1}}{\poem@cr@ii{#1}[\z@]}}

That’s the standard hacking over. Here’s the tricky bit.

172 \def\poem@cr@ii#1 [#2]{Y
173 \ifnumO=‘{}\fi%

First of all, I must clear the command which raises an error in the right hand
column. Then I'll enter the column and insert the line number (which was stored
in \@labels for safekeeping).

174 \global\let\poem@rightcolumn\relax
175 &\relax,
176 \1llap{\unhbox\@labels}/

Now T'll reset the various hooks and things ready for the next like.

177 \global\let\poem@printline\poemline
178 \global\let\poem@rightcolumn\poem@@rightcolumn

Now to decide whether to start a new chunk. I'll decrement the counter, and
if it reaches zero, I'll end that chunk and start a new one.

179 \globall\advance\poem@linesleft\m@ne,
180 \ifnum\poem@linesleft=\z@%

181 \poem@endchunk?,

182 \expandafter\poem@startchunk?,
183 \else

184 \expandafter\cr/

185 \fi}

Finally, if T had a split line, I must change the \prevdepth setting to keep
everyone happy.

186 \noalign{¥%

187 \addpenalty{#1}/,

188 \vskip#2/

189 \ifdim\poem@prevdepth=\maxdimen\else\prevdepth\poem@prevdepth\fi%
190 Y%

191 }

13

\poem@donl

\splitline

\stanza

The \poem@nl macro implements \nl during those ‘in-between’ times outside of
a line of doggerel. This is actually spectacularly easy.

192 \def\poem@donl{’

193 \noalign{\ifnumO=‘}\£fi%

194 \@ifstar{\poem@donl@i{\addpenalty\@M}}{\poem@donl@i{}}%
195

196 \def\poem@donl@i#1{%

197 \@ifnextchar [{\poem@donl1@ii{#1}}{\poem@donl@ii{#1}[\z@]}/
198

199 \def\poem@donl@ii#1 [#2]{%

200 #17

201 \addvspace{#2}}

202 \ifnumO=‘{\fil}}

203 }

2.9 Other things

Well, that’s all that I actually need to supply; everything else can be added over
the top.

Some books appear to split lines, starting the second where the first ends. This is
easy to handle with the \splitline command.

204 \def\splitline{\nl\nonumber\kern\poem@lastwidth\ }

New stanzas are started using the \stanza command, oddly enough. There’s a
problem, though: to number, or not to number? Following the example of W TEX’s
sectioning commands, I’ll not number if there’s a following *. I don’t really think
that this is the right thing to do, since unnumbered stanzas are much more common
than numbered ones. This is actually a real pain.

Anyway, if 'm going to handle numbered stanzas, I’ll need a counter.

205 \newcounter{stanza}

Whatever happens, I'll start by adding in some vertical space above the stanza.
Then I'll see if there’s a following *. If so, step the counter and typeset the
number; otherwise do nothing. However, there’s a snaglet here: \@ifstar will do
assignments and things, and start the next row of the alignment prematurely. I'll
do the work in a \noalign to avoid problems. (Yuk.)

206 \def\stanza{’,

207 \nl%

208 \noalign{\ifnumO=‘}\fi%
209 \@ifstar{%

210 \stanza@i{}

211

212 \stanza@i{\global\advance\c@stanza\@ne\labelstanzaly,
213 Yh

214 }

OK. Now I have to see if there’s an optional argument. I'm still safely inside
that \noalign, remember.

215 \def\stanza@i#1{\Q@ifnextchar [{\stanza@ii{#1}}{\stanza@ii{#1}[1}}
I can now read the argument, and decide what actually needs to be done.

216 \def\stanzaQii#1 [#2]{Y%

14

I want to be able to allow \labels inside the optional argument. However, I
also want to be able to see whether the number and/or title is ‘empty’, bearing in
mind that the title may contain just a \label, which shouldn’t alter the spacing;
which means really that I ought to put them into boxes and measure them. But
this stops \refstepcounter’s setting of \@currentlabel (in the ‘number’ box)
being noticed by the possible \label command in the other box. I could say
something like

\refstepcounter{stanza}
\addtocounter{stanza}{-1}

which will do what I want, but defining \@currentlabel by hand is consider-
ably easier, and more efficient.

217 \def\Q@currentlabel{\p@stanza\thestanzal,
218 \sbox\z@{#1}
219 \sbox\tw@{\stanzaname{#2}}/,

There are essentially four possibilities:

e There’s nothing to typeset at all. This is easy: don’t typeset anything.
e There’s a number, but no title.

e There’s a title, but no number.

e There’s both a title and a number.

The tricky bit is the last possibility, since I don’t know how the two will be
separated. Oh, well: I'll just have to use a load of user macros.

As a first attempt, I’ll put the thing to typeset into box 0. This is fairly simple.
If there’s a title, then I check if there’s a number too: if so, I'll combine them both
into box 0; otherwise I can just copy the box over. If there’s anything to typeset
at this point, it’ll be in box 0. However, I'm currently in a \noalign, and that
introduces a level of grouping. So I'll then move the box into box 1, which is
global.

220 \ifdim\wd\tw@>\z@}

221 \ifdim\wd\z@>\z@%

222 \global\setbox\@ne\hbox{\stanzacombine{\unhbox\z@}{\unhbox\tw@}}%
223 \else’

224 \global\setbox\@ne\box\twey

225 \fi%

226 \elsel

227 \global\setbox\@ne\hbox{\unhbox\z@\unhbox\twe}7

228 \fi%

That’s all the messy processing done. Now I can just typeset the title.

229 \ifnumO=‘{\fi}},
230 \stanzaspace},
231 \ifdim\wd\@ne>\z@Y%

232 \nonumber?Y,

233 \stanzatitle{\unhbox\@nel}
234 \else

235 \fi%

15

\thestanza

\labelstanza

\stanzaname

\stanzacombine

\stanzaspace

\stanzatitle

That’s it! I’'m done.

236 }

The stanza counter must be reset at the beginning of the poem.
237 \poem@addtohook{\global\c@stanza\z@}

Now for some formatting defaults. This is easy stuff.

Obviously, this is the default way to typeset a stanza number.

238 \renewcommand{\thestanza}{\Roman{stanza}}

This macro is responsible for giving the stanza number to be typeset in the title
line.

239 \providecommand{\labelstanza}{\textsc{\roman{stanzal}}}

This is responsible for typesetting the stanza’s name. This is easy.

240 \providecommand{\stanzaname} [1]{\textsc{#1}}

This is how to combine stanza numbers and names. I'll just leave a space.

241 \providecommand{\stanzacombine} [2] {#1\quad#2}

Separate the previous stanza from a new one. This isn’t done in \stanzatitle
because there may not be a title.

242 \providecommand{\stanzaspace}{\nl[\medskipamount]}

Finally, this is the typesetting of the stanza title in its entirety.

243 \providecommand{\stanzatitle} [1]{%
244 \hfill#1\hfill\\%
245 }

Mark Wooding, 28 May 1996

Appendix

A The GNU General Public License

The following is the text of the GNU General Public License, under the terms of
which this software is distributed.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

16

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifi-
cations and/or translated into another language. (Hereinafter, translation
is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

17

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what
the Program does.

. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the
terms of this License.

(¢) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how
to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be rea-
sonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of
a whole which is a work based on the Program, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective works based on the
Program.

18

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange;

or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(¢) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means
all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Pro-
gram or its derivative works. These actions are prohibited by law if you do

19

not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original licen-
sor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

20

10.

11.

12.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and “any later
version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS)7 EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of

21

warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for de-
tails type ‘show w’.

This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show ¢’ for details.

The hypothetical commands show w and show c¢ should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than show w and show c; they could even be mouse-clicks
or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary. Here
is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead of
this License.

22

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\e@ 17, 18, 23, 30
\@@par 144
NOM o 169, 194
\@auxout 34
\@centering 13, 123
\@currentlabel 85, 217
\@firstoftwo 45
\@ifnextchar 50, 171, 197, 215
\@ifstar 169, 194, 209
\@inlabelfalse 70
\@labels 135, 136, 176
\@maybe@unskip 38, 122
\@newlistfalse 71
\@secondoftwo 47
\@tempa 17, 18, 23, 30
\@tempb 22,27
\@totalleftmargin 81, 117
AN\ 3, 73, 107, 113, 244
AL e 204
A
\addpenalty 187, 194
\addvspace 201
\AtEndDocument 32
\author 2, 69
B
\bfseries 106
\bigskip 83, 97
\bigskipamount 107
C
\c@poem@count 77, 94, 96
\c@poemchunksize 4
\c@poemline 65, 92
\c@stanza 212, 237
\count@ 40-42, 44
\Ner 124, 129, 184
\Crer 127
D
\dimen@ 80-82, 124, 134, 136, 137, 139
\dimen@i 128, 131
E
\endxpoem 89

23

environments:
POEmM 2
XPOEM . .ttt 4, 64
\everycr 72
H
\halign 120
\hbOxt@ 129
I
\if@filesw 33
\ifmultipleof 4, 39, 59
\ifpoem@long 11, 93
\ignorespaces 122
\itshape 112
L
\labelstanza 2, 212, 239
\large 106
\lastbox 148
\lastskip 38
\leftskip 140
\linewidth . 55, 82, 134, 139, 155, 156
\1lap .. voii 55, 176
M
\maxdimen 162, 189
\medskipamount 242
N
\newcount 3,5
\newcounter 1, 2, 205
\newdimen 7-10
\newif 11
\newskip 12
\nl 3,74, 90, 104, 110, 204, 207, 242
\noalign 128, 186, 193, 208
\noindent 141
\nointerlineskip 128
\nonumber 4, 67, 105, 111, 204, 232
\normalfont 106, 112
O
\omit 129
P
\p@poemline 85
\p@stanza 217
\par 76

\parshape 139
poem (environment) 2
\poem@@rightcolumn 178
\poem@addtohook 100, 237
\poem@cr 73, 121, 165
\poem@cr@i 169, 171
\poem@cr@ii 171, 172
\poem@doline 122, 133
\poem@donl 75, 167, 192
\poem@donl®@i 194, 196
\poem@donl@ii 197, 199
\poem@endchunk 91, 126, 181
\poem@getwidth 16, 77
\poem@hook 86, 99, 101
\poem@lastwidth 9, 151, 160, 204
\poem@linesleft 5, 116, 179, 180
\poem@longfalse 79
\poem@longtrue 92
\poem@lp@i 50, 51
\poem@nl 74, 75, 121, 167
\poem@prevdepth 10, 149, 162, 189
\poem@printline 66, 67, 135, 177
\poem@rightcolumn 124, 174, 178
\poem@savedwidths 15, 18, 35
\poem@setwidth 21, 94
\poem@startchunk 87, 115, 182
\poem@thiswidth . 8,26, 78, 156, 159
\poem@width 7, 18, 129, 155, 158
\poem@widths 14, 24, 30, 35
\poemauthor 2, 69, 109
\poemchunksize 3,4, 6,92, 116
\poemleftskip 12, 13, 118
\poemline 2, 4, 58, 66, 177
\poemlineposition 4, 50, 60
\poemtitle 2, 68, 103
\prevdepth 128, 131, 189
\providecommand 58, 103, 109, 239-243
Q
\quad ... 241

24

R
\refstepcounter 62
\renewcommand 238
\NRoman 238
\roman 239
S
\sbox 218, 219
\scriptsize 60
\skip@ 117-119
\smallskipamount 110
\splitline 5, 204
\stanza 2, 205
\stanza@i 210, 212, 215
\stanza@ii 215, 216
\stanzacombine 222, 241
\stanzaname 219, 240
\stanzaspace 230, 242
\stanzatitle 233, 243
\stepcounter 84
T
\tabskip 119, 123, 124
\textsc 239, 240
\thepoemline 60, 85
\thestanza 217, 238
\thr@@ 146, 148-151, 154
\titleo 2, 68
U
\Unveopy 147
\%

\value 59
\voidb@x 154
X
\Xpoem 64
xpoem (environment) 4, 64

